Consolidation of Calcium Carbonate Using Polyacrylamides with Different Chemistries

Author:

Lew Jin Hau1ORCID,Luckham Paul F.1,Matar Omar K.1ORCID,Müller Erich A.1ORCID,Santos Adrielle Sousa1ORCID,Maung Maung Myo Thant2ORCID

Affiliation:

1. Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK

2. PETRONAS Research Sdn. Bhd., Bandar Baru Bangi 43000, Selangor, Malaysia

Abstract

In this work, the consolidation of calcium carbonate (CaCO3) by polyacrylamide (PAM) of different molecular weights, charge densities, and functional groups was investigated via oscillatory rheology and unconfined compressive strength (UCS) analysis. Oscillatory rheology showed that the storage modulus G′ was approximately 10 times higher than the loss modulus G″, indicating a highly elastic CaCO3 sample upon consolidation via PAM. Both oscillatory rheology and UCS analysis exhibited similar trends, wherein the mechanical values (G′, G″, and UCS) first increased with increasing polymer dosage, until they reached a peak value (typically at 3 mgpol/gCaCO3), followed by a decrease in the mechanical values. This indicates that there is an optimum polymer dosage for the different PAM-CaCO3 colloidal systems, and that exceeding this value induces the re-stabilisation of the colloidal system, leading to a decreased degree of consolidation. Regarding the effect of the PAM molecular weight, the peak G′ and UCS values of CaCO3 consolidated by hydrolysed PAM (HPAM) of different molecular weights are very similar. This is likely due to the contour length of the HPAMs being either almost the same or longer than the average distance between two CaCO3 particles. The effect of the PAM charge density revealed that the peak G′ and UCS values decreased as the charge density of the PAM increased, while the optimum PAM dosage increased with decreasing PAM charge density. The higher likelihood of lower-charge PAM bridging between the particles contributes to higher elastic energy and mechanical strength. Finally, regarding the PAM functional group, CaCO3 consolidated by sulfonated polyacrylamide (SPAM) typically offers lower mechanical strength than that consolidated with HPAM. The bulky sulfonate side groups of SPAM interfere with the surface packing, reducing the number of polymers able to adsorb onto the surface and, eventually, reducing the degree of consolidation of CaCO3. The zeta potential of the PAM-CaCO3 samples became more negative with increasing PAM concentration due to the saturation of the particle surface. Good agreement between oscillatory rheology and UCS analysis could accelerate PAM screening for optimum CaCO3 consolidation.

Funder

Petroliam Nasional Berhad

Imperial College London

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3