Enhancing IoT Security through a Green and Sustainable Federated Learning Platform: Leveraging Efficient Encryption and the Quondam Signature Algorithm

Author:

Aljrees Turki1ORCID,Kumar Ankit2,Singh Kamred Udham3,Singh Teekam4ORCID

Affiliation:

1. Department College of Computer Science and Engineering, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia

2. Department of Computer Engineering & Applications, GLA University, Mathura 281406, India

3. School of Computing, Graphic Era Hill University, Dehradun 248002, India

4. Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, India

Abstract

This research paper introduces a novel paradigm that synergizes innovative algorithms, namely efficient data encryption, the Quondam Signature Algorithm (QSA), and federated learning, to effectively counteract random attacks targeting Internet of Things (IoT) systems. The incorporation of federated learning not only fosters continuous learning but also upholds data privacy, bolsters security measures, and provides a robust defence mechanism against evolving threats. The Quondam Signature Algorithm (QSA) emerges as a formidable solution, adept at mitigating vulnerabilities linked to man-in-the-middle attacks. Remarkably, the QSA algorithm achieves noteworthy cost savings in IoT communication by optimizing communication bit requirements. By seamlessly integrating federated learning, IoT systems attain the ability to harmoniously aggregate and analyse data from an array of devices while zealously guarding data privacy. The decentralized approach of federated learning orchestrates local machine-learning model training on individual devices, subsequently amalgamating these models into a global one. Such a mechanism not only nurtures data privacy but also empowers the system to harness diverse data sources, enhancing its analytical capabilities. A thorough comparative analysis scrutinizes varied cost-in-communication schemes, meticulously weighing both encryption and federated learning facets. The proposed approach shines by virtue of its optimization of time complexity through the synergy of offline phase computations and online phase signature generation, hinged on an elliptic curve digital signature algorithm-based online/offline scheme. In contrast, the Slow Block Move (SBM) scheme lags behind, necessitating over 25 rounds, 1500 signature generations, and an equal number of verifications. The proposed scheme, fortified by its marriage of federated learning and efficient encryption techniques, emerges as an embodiment of improved efficiency and reduced communication costs. The culmination of this research underscores the intrinsic benefits of the proposed approach: marked reduction in communication costs, elevated analytical prowess, and heightened resilience against the spectrum of attacks that IoT systems confront.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3