Three Pathways of Cancer Cachexia: Inflammation, Changes in Adipose Tissue and Loss of Muscle Mass—The Role of miRNAs

Author:

Homa-Mlak Iwona,Pigoń-Zając DominikaORCID,Wawrejko Paweł,Małecka-Massalska TeresaORCID,Mlak RadosławORCID

Abstract

According to the World Health Organization, in 2018, cancers, along with over 18 million new cases and over 9.5 million deaths remained one of the main causes of mortality globally. Cancer-cachexia, also called wasting syndrome is a complex, multifactorial disorder characterized by progressive skeletal muscle mass loss, with or without adipose tissue atrophy. It is considered as a state of cancer-related malnutrition (CRM) accompanied by inflammation, that is irreversible despite the introduction of nutritional support. Indication of markers of pre-cachectic state seems to be urgently needed. Moreover, such markers have also potential to be used in the assessment of the effects of anti-cachexia treatment, and prognosis. miRNAs are non-coding RNA molecules that are about 20–30 nucleotides long. Single miRNA has the potential to control from few dozen to several hundred different genes. Despite the fact, that the number of miRNAs keep growing. we are making steady progress in establishing regulatory targets and their physiological levels. In this review we described the current knowledge on the impact of miRNAs on processes involved in cancer cachexia development: inflammation, adipose tissue remodelling, and loss of muscle mass both in animal models and the human cohorts. The available studies suggest that miRNAs, due to their properties, e.g., the possibility of regulating even hundreds of different genes, signalling pathways, and biological processes by one molecule, but also due their stability in biological material, the fact, that the change in their level reflects the disease status or the response to the applied treatment, they have great potential to be used as valuable biomarkers in the diagnosis, treatment, and prognosis of cancer cachexia.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3