Using Boosted Machine Learning to Predict Suicidal Ideation by Socioeconomic Status among Adolescents

Author:

Park Hwanjin,Lee KounseokORCID

Abstract

(1) Background: This study aimed to use machine learning techniques to identify risk factors for suicidal ideation among adolescents and understand the association between these risk factors and socioeconomic status (SES); (2) Methods: Data from 54,948 participants were analyzed. Risk factors were identified by dividing groups by suicidal ideation and 3 SES levels. The influence of risk factors was confirmed using the synthetic minority over-sampling technique and XGBoost; (3) Results: Adolescents with suicidal thoughts experienced more sadness, higher stress levels, less happiness, and higher anxiety than those without. In the high SES group, academic achievement was a major risk factor for suicidal ideation; in the low SES group, only emotional factors such as stress and anxiety significantly contributed to suicidal ideation; (4) Conclusions: SES plays an important role in the mental health of adolescents. Improvements in SES in adolescence may resolve their negative emotions and reduce the risk of suicide.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3