Analyzing the Soil Microbial Characteristics of Poa alpigena Lindm. on Bird Island in Qinghai Lake Based on Metagenomics Analysis

Author:

Li LinglingORCID,Che Zihan,Cao Yanhong,Qi Lulu,Chen Kelong,Wang Hengsheng

Abstract

Poa alpigena Lindm. is a dominant forage grass that is widely distributed on the Qinghai-Tibetan Plateau and is often used in the restoration of degraded grasslands. Soil microorganisms are major players in the cycling of materials in terrestrial ecosystems. In this study, based on high-throughput sequencing, the rhizosphere and non-rhizosphere soils of Poa alpigena L. on Bird Island, Qinghai Lake, were used to investigate the effects of Poa alpigena L. on the composition and structure of soil microbial communities, and to establish associated soil microbial gene pools. Results revealed that microorganisms in the soil of Poa alpigena L. on Bird Island belonged to 62 phyla, 112 classes, 245 orders, 518 families, 1610 genera, and 5704 species. The dominant soil bacteria in rhizosphere and non-rhizosphere soils were Proteobacteria (49.62%, 47.13%) and Actinobacteria (30.31% and 31.67%), whereas the dominant fungi were Ascomycota (3.15% and 3.37%) and Basidiomycota (0.98% and 1.06%). Alpha diversity analysis revealed that the microbial richness and diversity in non-rhizosphere soil were significantly higher than those in rhizosphere soil, mainly influenced by soil water content and total nitrogen content. Furthermore, on the basis of LEfSe analysis, Alphaproteobacteria and Betaproteobacteria were identified as prominent differential taxa for rhizosphere and non-rhizosphere soils, respectively. The key differential metabolic pathways of rhizosphere soil microorganisms were those associated with the ATP-binding cassette (ABC) transporter, basal metabolism, and cytochrome P450 metabolism, whereas those of non-rhizosphere soil microorganisms included the gene expression-related pathways, methane metabolism, and pathway associated with degradation of aromatic compounds. These findings indicated that the rhizosphere soil of Poa alpigena L. is selective for microorganisms that play important roles in the oxidation of methane and regulation of the greenhouse effect on Bird Island, and that the soil environment on this island may be subject to contamination with aromatic compounds.

Funder

Natural Science Foundation of Anhui Province

The National Natural Science Foundation of P.R. China

Natural Science Research Project of Anhui Provincial Colleges and Universities

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3