Development of an Online Monitoring Device for the Mixing Ratio of Two-Part Epoxy Adhesives Using an Electrical Impedance Spectroscopy Technique and Machine Learning

Author:

Choi Jeong Hee,An Chae HunORCID

Abstract

Two-part epoxy adhesives are widely used in a range of industries. Two-part epoxy adhesive is composed of a resin and a hardener. Both materials remain stable in the general environment but curing begins when mixed in the specified mixing ratio. However, it has the disadvantage of requiring a specific mixing device. In addition, if the mixing ratio is different from the specified ratio due to the error of the mixing system, it has a fatal effect on the adhesion performance. The dielectric constant is a characteristic constant of a material. Therefore, it represents the mixing ratio of mixed two-part epoxy adhesives. With the electrical impedance spectroscopy technique, it can be measured indirectly by measuring impedance according to frequency and temperature. In this study, a sensor and embedded device for an online monitoring of its integrity using a regression method among machine learning are developed, which can acquire impedance data with frequency and temperature data according to the change in the mixing ratio of a two-part epoxy adhesive. The experimentally collected data were used as training data for the machine learning algorithm. It was found that the learned machine learning algorithm effectively estimates the mixing ratio of the two-part epoxy with an arbitrary value.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3