Application of Stage-Fall-Discharge Rating Curves to a Reservoir Based on Acoustic Doppler Velocity Meter Measurement Data

Author:

Kim YeonsuORCID,Oh Sungryul,Lee SeungsooORCID,Byun Jisun,An Hyunuk

Abstract

The applicability of the stage-fall-discharge (SFD) method in combination with acoustic Doppler velocity meter (ADVM) data, upstream of a hydraulic structure, specifically, the Sejong-weir located in the Geum River, Korea, was examined. We developed three rating curves: a conventional simple rating curve with the data measured using an acoustic Doppler current profiler (ADCP) and floating objects, an SFD rating curve with the data measured using the ADCP and floating objects, and an SFD rating curve with the data measured using an ADVM. Because of the gate operation effect, every rating curve involved many uncertainties under 1000 m3/s (3.13 m2/s, specific discharge). In terms of the hydrograph reconstruction, compared with the conventional simple rating curve, the SFD developed using ADVM data exhibited a higher agreement with the measured data in terms of the pattern. Furthermore, the measured discharge over 1000 m3/s primarily ranged between 97.5% and 2.5% in the graph comparing the ratio of the median and observed discharge. Based on this experiment, it is confirmed that the SFD rating curve with data to represent the backwater effect, such as ADVM data, can reduce the uncertainties induced by the typical rating curve

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference15 articles.

1. Stage-Discharge Relations on the Middle Mississippi River

2. Unique discharge rating curve based on the morphology parameter Z;Gergov;Int. Assoc. Hydrol. Sci. Publ.,2003

3. Dynamic rating curve assessment in unstable rivers using Ornstein-Uhlenbeck processes

4. The Calculation of Streamflow from Measurements of Stage;Fenton,2001

5. Streamflow Measurement;Herschy,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3