Gaussian-Linearized Transformer with Tranquilized Time-Series Decomposition Methods for Fault Diagnosis and Forecasting of Methane Gas Sensor Arrays

Author:

Zhang Kai1,Ning Wangze1,Zhu Yudi1,Li Zhuoheng1,Wang Tao1,Jiang Wenkai1,Zeng Min1ORCID,Yang Zhi1ORCID

Affiliation:

1. Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Methane is considered as a clean energy that is widely used in places with high environmental requirements. The increasing demand for methane exploration in polar and deep sea extreme environments has a positive role in carbon neutrality policies. As a result, there will be a gradual increase in exploration activities for deep sea methane resources. Methane sensors require high reliability but are prone to faults, so fault diagnosis and forecasting of gas sensors are of vital practical significance. In this work, a Gaussian-linearized transformer model with a tranquilized time-series decomposition method is proposed for fault diagnosis and forecasting tasks. Since the traditional transformer model requires more computational expense with time complexity of O (N2) and is not applicable to continuous-sequence prediction tasks, two blocks of the transformer are improved. First, a Gaussian-linearized attention block is modified for fault-diagnosis tasks so that its time complexity can be changed to O (N), which can reduce computational resources. Second, a model with proposed attention for fault forecasting replaces the traditional embedding block with a decomposed block, which can input the continuous sequence data to the model completely and preserve the continuity of the methane data. Results show that the Gaussian-linearized transformer improves the accuracy of fault diagnosis to 99% and forecasting with low computational cost, which is superior to that of traditional methods. Moreover, the least mean-square-error loss of fault forecasting is 0.04, which is lower compared with the traditional time series prediction models and other deep learning models, highlighting the great potential of the proposed transformer for fault diagnosis and fault forecasting of gas sensor arrays.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

Scientific Research Fund of Second Institute of Oceanography, Ministry of Natural Resources of China

Startup Fund for Youngman Research at Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3