Unsupervised Domain Adaptation via Weighted Sequential Discriminative Feature Learning for Sentiment Analysis

Author:

Badr Haidi1,Wanas Nayer1,Fayek Magda2

Affiliation:

1. Informatics Department, Electronics Research Institute, Cairo P.O. Box 12622, Egypt

2. Computer Engineering Department, Faculty of Engineering, Cairo University, Giza P.O. Box 12613, Egypt

Abstract

Unsupervised domain adaptation (UDA) presents a significant challenge in sentiment analysis, especially when faced with differences between source and target domains. This study introduces Weighted Sequential Unsupervised Domain Adaptation (WS-UDA), a novel sequential framework aimed at discovering more profound features and improving target representations, even in resource-limited scenarios. WS-UDA utilizes a domain-adversarial learning model for sequential discriminative feature learning. While recent UDA techniques excel in scenarios where source and target domains are closely related, they struggle with substantial dissimilarities. This potentially leads to instability during shared-feature learning. To tackle this issue, WS-UDA employs a two-stage transfer process concurrently, significantly enhancing model stability and adaptability. The sequential approach of WS-UDA facilitates superior adaptability to varying levels of dissimilarity between source and target domains. Experimental results on benchmark datasets, including Amazon reviews, FDU-MTL datasets, and Spam datasets, demonstrate the promising performance of WS-UDA. It outperforms state-of-the-art cross-domain unsupervised baselines, showcasing its efficacy in scenarios with dissimilar domains. WS-UDA’s adaptability extends beyond sentiment analysis, making it a versatile solution for diverse text classification tasks.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3