Modeling the Spatial Distribution of Population Based on Random Forest and Parameter Optimization Methods: A Case Study of Sichuan, China

Author:

Chen Yunzhou1,Wang Shumin1,Gu Ziying1,Yang Fan2

Affiliation:

1. Institute of Earthquake Forecasting, Beijing 100036, China

2. Information Center of Ministry of Natural Resources, Beijing 100812, China

Abstract

Spatial population distribution data is the discretization of demographic data into spatial grids, which has vital reference significance for disaster emergency response, disaster assessment, emergency rescue resource allocation, and post-disaster reconstruction. The random forest (RF) model, as a prominent method for modeling the spatial distribution of population, has been studied by many scholars, both domestically and abroad. Specifically, research has focused on aspects such as multi-source data fusion, feature selection, and data accuracy evaluation within the modeling process. However, discussions about parameter optimization methods during the modeling process and the impact of different optimization methods on modeling accuracy are relatively limited. In light of the above circumstances, this paper employs the RF model to conduct research on population spatialization with multi-source spatial information data. The study primarily explores the differences in model parameter optimization achieved through random search algorithms, grid search algorithms, genetic algorithms, simulated annealing algorithms, Bayesian optimization based on Gaussian process algorithms, and Bayesian optimization based on gradient boosting regression tree algorithms. Additionally, the study investigates the influence of different optimization algorithms on the accuracy of population spatialization modeling. Subsequently, the model with the highest accuracy is selected as the prediction model for population spatialization. Based on this model, a spatial population distribution dataset of Sichuan Province at a 1 km resolution is generated. Finally, the population dataset created in this paper is compared and validated with open datasets such as GPW, LandScan, and WorldPop. Experimental results indicate that the spatial population distribution dataset produced by the Bayesian optimization-based random forest model proposed in this paper exhibits a higher fitting accuracy with real data. The Coefficient of Determination (R2) is 0.6628, the Mean Absolute Error (MAE) is 12,459, and the Root Mean Squared Error (RMSE) is 25,037. Compared to publicly available international datasets, the dataset generated in this paper more accurately represents the spatial distribution of the population.

Funder

National Natural Science Foundation of China

Fundamental Research Funds of the Institute of Earthquake Forecasting, China Earthquake Administration

National High-Resolution Earth Observation Major Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3