Physical and Mechanical Properties and Damage Mechanism of Sandstone at High Temperatures

Author:

Zheng Yadong1,Zhang Lianying2,Wu Peng2,Guo Xiaoqian1,Li Ming3,Zhu Fuqiang3

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The physical and mechanical properties of rocks change significantly after being subjected to high temperatures, which poses safety hazards to underground projects such as coal underground gasification. In order to investigate the effect of temperature on the macroscopic and microscopic properties of rocks, this paper has taken sandstone as the research object and conducted uniaxial compression tests on sandstone specimens at different temperatures (20–1000 °C) and different heating rates (5–30 °C/min). At the same time, the acoustic emission (AE) test system was used to observe the acoustic emission characteristics of the rock damage process, and the microstructural changes after high temperature were analyzed with the help of a scanning electron microscope (SEM). The test results show that the effect of temperature on sandstone is mainly divided into three stages: Stage I (20–500 °C) is the strengthening zone, the evaporation of water and the contraction of primary fissures, and sandstone densification is enhanced. In particular, the compressive strength and elastic modulus increase, the macroscopic damage mode is dominated by shear damage, and the fracture micromorphology is mainly brittle fracture. Stage II (500–600 °C) is the transition zone, 500 °C is the threshold temperature for the compressive strength and modulus of elasticity, and the damage mode changes from shear to cleavage damage, and the sandstone undergoes brittle–ductile transition in this temperature interval. Stage III is the physicochemical deterioration stage. The changes in the physical and chemical properties make the sandstone compressive strength and modulus of elasticity continue to decline, the macroscopic damage mode is mainly dominated by cleavage damage, and the fracture microscopic morphology is of a more toughness fracture. The effect of different heating rates on the mechanical properties of sandstone was further studied, and it was found that the mechanical properties of the rock further deteriorated under higher heating rates.

Funder

the National Natural Science Foundation of China

the State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology

the Excellent Science and Technology Innovation Team of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3