Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses

Author:

Jadach Barbara1ORCID,Nowak Agata2,Długaszewska Jolanta3ORCID,Kordyl Oliwia4,Budnik Irena4,Osmałek Tomasz2ORCID

Affiliation:

1. Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland

2. Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland

3. Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland

4. Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland

Abstract

Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. A good alternative for the treatment of deep-skin mycoses seems to be microneedles (MNs). The aim of this research was to fabricate and evaluate the properties of innovative MNs coated with a hydrogel as potential carriers for clotrimazole (CLO) in the treatment of deep fungal skin infections. A 3D printing technique using a photo-curable resin was employed to produce MNs, which were coated with hydrogels using a dip-coating method. Hydrogels were prepared with carbopol EZ-3 Polymer (Lubrizol) in addition to glycerol and triisopropanolamine. Clotrimazole was introduced into the gel as the solution in ethanol or was suspended. In the first step of the investigation, a texture analysis of hydrogels was prepared with a texture analyzer, and the drug release studies were conducted with the use of automatic Franz diffusion cells. Next, the release profiles of CLO for coated MNs were checked. The last part of the investigation was the evaluation of the antifungal activity of the prepared systems, and the inhibition of the growth of Candida albicans was checked with the diffusion and suspended-plate methods. The texture profile analysis (TPA) for the tested hydrogels showed that the addition of ethanol significantly affects the following studied parameters: hardness, adhesiveness and gumminess, causing a decrease in their values. On the other hand, for the gels with suspended CLO, better spreadability was seen compared to gels with dissolved CLO. The presence of the active substance did not significantly affect the values of the tested parameters. In the dissolution study, the results showed that higher amounts of CLO were released for MNs coated with a hydrogel containing dissolved CLO. Also, microbiological tests proved its efficacy against fungal cultures. Qualitative tests carried out using the diffusion method showed that circular zones of inhibition of fungal growth on the plate were obtained, confirming the hypothesis of effectiveness. The suspension-plate technique confirmed the inhibitory effect of applied CLO on the growth of Candida albicans. From the analysis of the data, the MNs coated with CLO dissolved in hydrogel showed better antifungal activity. All received results seem to be helpful in developing further studies for MNs as carriers of antifungal substances.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3