Low-Cost 2D Index and Straightness Measurement System Based on a CMOS Image Sensor

Author:

Küng Alain,Bircher Benjamin A.ORCID,Meli FelixORCID

Abstract

Accurate traceable measurement systems often use laser interferometers for position measurements in one or more dimensions. Since interferometers provide only incremental information, they are often combined with index sensors to provide a stable reference starting point. Straightness measurements are important for machine axis correction and for systems having several degrees of freedom. In this paper, we investigate the accuracy of an optical two-dimensional (2D) index sensor, which can also be used in a straightness measurement system, based on a fiber-coupled, collimated laser beam pointing onto an image sensor. Additionally, the sensor can directly determine a 2D position over a range of a few millimeters. The device is based on a simple and low-cost complementary metal–oxide–semiconductor (CMOS) image sensor chip and provides sub-micrometer accuracy. The system is an interesting alternative to standard techniques and can even be implemented on machines for real-time corrections. This paper presents the developed sensor properties for various applications and introduces a novel error separation method for straightness measurements.

Funder

European Metrology Programme for Innovation and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reducing the uncertainty of laser straightness measurements via local saturation of imaging sensors;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

2. An Innovative Model for Detecting Vehicles Based on Machine Vision;Proceedings of the 2024 10th International Conference on Computing and Data Engineering;2024-01-15

3. A Straightness Error Compensation System for Topography Measurement Based on Thin Film Interferometry;Photonics;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3