CRISPR/Cas9-Mediated Multiplexed Genome Editing in Aspergillus oryzae

Author:

Li Qinghua,Lu Jinchang,Zhang Guoqiang,Zhou JingwenORCID,Li Jianghua,Du Guocheng,Chen Jian

Abstract

Aspergillus oryzae has great potential and competitive advantages to be developed as an excellent expression system, owing to its powerful protein secretion ability, complex post-translational modification, and safety characteristics. However, the low efficiency of genetic modification and gene function analysis is an urgent problem to be solved in A. oryzae and other filamentous fungal systems. Therefore, establishing efficient genetic transformation and multiplexed genome editing tools is significant for developing A. oryzae expression systems, and revealing its intrinsic mechanisms. In this study, the high-efficiency transformation of A. oryzae was achieved by optimizing the preparation conditions of protoplasts, and the random editing efficiency of the CRISPR/Cas9 system in A. oryzae for single and double genes reached 37.6% and 19.8%, respectively. With the aid of the selection marker, such as color or resistance, the editing efficiency of single and double genes can reach 100%. Based on the developed CRISPR/Cas9 genome editing method, the heterologous lipase gene (TLL) achieves precise integration at different genetic loci in one step. The efficient and accurate acquisition of positive transformants indicated that the morphological gene yA could be used as a helpful selection marker for genome editing in A. oryzae. In conclusion, the developed system improves the efficiency of transformation and multiplexed genome editing for A. oryzae. It provides a practical method for developing the A. oryzae high-efficiency expression system for heterologous proteins.

Funder

National Key Research and Development Program of China

the Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Pharmacology (medical)

Reference33 articles.

1. Improvement of the quality of soy sauce by reducing enzyme activity in Aspergillus oryzae;Ding;Food Chem.,2019

2. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei;Frisvad;Appl. Microbiol.,2018

3. Filamentous fungi for the production of enzymes, chemicals and materials;Curr. Opin. Biotechnol.,2019

4. Recent advances in the development of Aspergillus for protein production;Li;Bioresour. Technol.,2022

5. CRISPR/Cas9-based genome editing of the filamentous fungi: The state of the art;Shi;Appl. Microbiol.,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3