Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data

Author:

Bruno RobertoORCID,Nicoletti FrancescoORCID,Cuconati Giorgio,Perrella Stefania,Cirone Daniela

Abstract

The spread of near-Zero Energy Buildings (nZEB) involves the employment of high performant air-conditioning plants where renewable sources can be integrated easily. In this context, heat pumps appear as a promising solution given their ability to exploit aerothermal, hydrothermal and geothermal sources and to supply both heating and cooling loads with the same device. In order to evaluate the energy performances in transient conditions, the actual winter (COP) and summer (EER) performance indexes, in the function of the sources’ temperatures and the capacity ratio (CR), have to be available. Nevertheless, heat pump manufactures often provide the trend of the performance indexes in the function of the temperatures of the sources specifically for nominal conditions, whereas the dependence of the performance indexes in the function of CR, that takes into account the part-load operation, is almost always not provided. Alternatively, specific technical standards suggest the use of a correction factor to modify nominal COP and EER for the attainment of the real performance indexes. In this paper, by using data from an experimental set-up equipped with air-water heat pumps, these correlations were tested and tuned. Winter results showed that correction factors suggested by standards have to be modified in the presence of a storage system. In summer, instead, a new correlation was developed to find a function between nominal and actual EERs in the function of CR by exploiting a similar approach employed for the COP calculation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3