Iterative Online Fault Identification Scheme for High-Voltage Circuit Breaker Utilizing a Lost Data Repair Technique

Author:

Zhou Gang,Han Zhongjie,Fu Jin,Xu Guan Hua,Ye ChengjinORCID

Abstract

Most of the prior-art electrical noninvasive monitoring systems adopt Zigbee, Bluetooth, or other wireless communication infrastructure. These low-cost channels are often interrupted by strong electromagnetic interference and result in monitoring anomalies, particularly packet loss, which severely affects the precision of equipment fault identification. In this paper, an iterative online fault identification framework for a high-voltage circuit breaker utilizing a novel lost data repair technique is developed to adapt to low-data quality conditions. Specifically, the improved efficient k-nearest neighbor (kNN) algorithm enabled by a k-dimensional (K-D) tree is utilized to select the reference templates for the unintegrated samples. An extreme learning machine (ELM) is utilized to estimate the missing data based on the selected nearest neighbors. The Softmax classifier is exploited to calculate the probability of the repaired sample being classified to each of the preset status classes. Loop iterations are implemented where the nearest neighbors are updated until their labels are consistent with the estimated labels of the repaired sample based on them. Numerical results obtained from a realistic high-voltage circuit breaker (HVCB) condition monitoring dataset illustrate that the proposed scheme can efficiently identify the operation status of HVCBs by considering measurement anomalies.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3