Mobile Network Coverage Prediction Using Multi-Modal Model Based on Deep Neural Networks and Semantic Segmentation

Author:

Zeng Sheng1ORCID,Ji Yuhang1ORCID,Chen Weiwei1,Yan Liping1ORCID,Zhao Xiang1

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

Abstract

A coverage prediction model helps network operators find coverage gaps, plan base station locations, evaluate quality of service, and build radio maps for spectrum sharing, interference management, localization, etc. Existing coverage prediction models rely on the height and transmission power of the base station, or the assistance of a path loss model. All of these increase the complexity of large-scale coverage predictions. In this paper, we propose a multi-modal model, DNN-SS, which combines a DNN (deep neural network) and SS (semantic segmentation) to perform coverage prediction for mobile networks. Firstly, DNN-SS filters the samples with a geospatial-temporal moving average filter algorithm, and then uses a DNN to extract numerical features. Secondly, a pre-trained model is used to perform semantic segmentation of satellite images of the measurement area. Thirdly, a DNN is used to extract features from the results after semantic segmentation to form environmental features. Finally, the prediction model is trained on the dataset consisting of numerical features and environmental features. The experimental results on campus show that for random location prediction, the model achieves a RMSE (Root Mean Square Error) of 1.97 dB and a MAE (Mean Absolute Error) of 1.41 dB, which is an improvement of 10.86% and 10.2%, respectively, compared with existing models. For the prediction of a test area, the RMSE and MAE of the model are 4.32 dB and 3.45 dB, respectively, and the RMSE is only 0.22 dB lower than that of existing models. However, the DNN-SS model does not need the height, transmission power, and antenna gain of the base station, or a path loss model, which makes it more suitable for large-scale coverage prediction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3