Motion and Load Analysis of the Flexible Platform Based on Noncontact Processing

Author:

Lin ChaoORCID,Jiang Mingdong,Xu Ping,Zheng Shan

Abstract

In this paper, we explore the applicability of the positioning stage based on flexible hinges for noncontact processing. According to the actual application of the positioning stage, Hooke’s law, the Euler–Bernoulli beam theory, and the geometric relationship of the structure are applied to analyze the coupled displacement in the movement of the positioning stage and the changes in the performance of the positioning stage caused by external loads. The coupled-displacement matrix and the external-load matrix obtained from the analysis are substituted into the ideal-displacement expression of the positioning stage to obtain the displacement expression of the platform in noncontact machining. The platform trajectory obtained by the referenced curve is analyzed. In addition, the coupled displacement in the X- and Y-directions and the coupled displacement caused by the external load in the Z-direction are nanoscales and about one-thousandth of the output displacement, which meets the requirement of tracking accuracy for micron-level machining. Finally, we use finite element analysis (FEA) and experiments to prove the correctness of the theoretical analysis.

Funder

the National Natural Science Foundation of China

Graduate Student Research Innovation Project of Chongqing University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3