High-Intensity Interval Training-Induced Hippocampal Molecular Changes Associated with Improvement in Anxiety-like Behavior but Not Cognitive Function in Rats with Type 2 Diabetes

Author:

Orumiyehei Amin,Khoramipour KayvanORCID,Rezaei Maryam Hossein,Madadizadeh Elham,Meymandi Manzumeh Shamsi,Mohammadi FatemehORCID,Chamanara Mohsen,Bashiri Hamideh,Suzuki KatsuhikoORCID

Abstract

(1) Background: Exercise exerts many neuroprotective effects in diabetes-induced brain disorders. In this study, we investigated the effect of high-intensity interval training (HIIT) on brain molecular changes and cognitive and anxiety-like behaviors in rats with type 2 diabetes. (2) Methods: Twenty-eight adult male rats were divided into four groups (n = 7): control (C), exercise + control (C+EX), diabetes (DM), and diabetes + exercise (DM+EX). Diabetes was induced using a two-month high-fat diet and a single dose of streptozotocin (35 mg/kg) in the DM and DM+EX groups. After, the C+EX and DM+EX groups performed HIIT for eight weeks (five sessions per week, running at 80–100% of VMax, 4–10 intervals) on a motorized treadmill. Then, the elevated plus maze (EPM) and open field test (OFT) were performed to evaluate anxiety-like behaviors. The Morris water maze (MWM) and shuttle box were used to assess cognitive function. The hippocampal levels of beta-amyloid and tau protein were also assessed using Western blot. (3) Results: The hippocampal levels of beta-amyloid and tau protein were increased in the DM group, but HIIT restored these changes. While diabetes led to a significant decrease in open arm time percentage (%OAT) and open arm enters percentage (%OAE) in the EPM, indicating anxiety-like behavior, HIIT restored them. In the OFT, grooming was decreased in diabetic rats, which was restored by HIIT. No significant difference between groups was seen in the latency time in the shuttle box or for learning and memory in the MWM. (4) Conclusions: HIIT-induced hippocampal molecular changes were associated with anxiety-like behavior improvement but not cognitive function in rats with type 2 diabetes.

Publisher

MDPI AG

Subject

General Neuroscience

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3