Auto-Classification of Parkinson’s Disease with Different Motor Subtypes Using Arterial Spin Labelling MRI Based on Machine Learning

Author:

Xiong Jinhua1,Zhu Haiyan2,Li Xuhang3,Hao Shangci1,Zhang Yueyi1,Wang Zijian3ORCID,Xi Qian1

Affiliation:

1. Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New Area, Shanghai 200120, China

2. Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Putuo District, Shanghai 200065, China

3. School of Computer Science and Technology, Donghua University, No. 2999 North Renmin Road, Songjiang Area, Shanghai 200000, China

Abstract

The purpose of this study was to automatically classify different motor subtypes of Parkinson’s disease (PD) on arterial spin labelling magnetic resonance imaging (ASL-MRI) data using support vector machine (SVM). This study included 38 subjects: 21 PD patients and 17 normal controls (NCs). Based on the Unified Parkinson’s Disease Rating Scale (UPDRS) subscores, patients were divided into the tremor-dominant (TD) subtype and the postural instability gait difficulty (PIGD) subtype. The subjects were in a resting state during the acquisition of ASL-MRI data. The automated anatomical atlas 3 (AAL3) template was registered to obtain an ASL image of the same size and shape. We obtained the voxel values of 170 brain regions by considering the location coordinates of these regions and then normalized the data. The length of the feature vector depended on the number of voxel values in each brain region. Three binary classification models were utilized for classifying subjects’ data, and we applied SVM to classify voxels in the brain regions. The left subgenual anterior cingulate cortex (ACC_sub_L) was clearly distinguished in both NCs and PD patients using SVM, and we obtained satisfactory diagnostic rates (accuracy = 92.31%, specificity = 96.97%, sensitivity = 84.21%, and AUCmax = 0.9585). For the right supramarginal gyrus (SupraMarginal_R), SVM distinguished the TD group from the other groups with satisfactory diagnostic rates (accuracy = 84.21%, sensitivity = 63.64%, specificity = 92.59%, and AUCmax = 0.9192). For the right intralaminar of thalamus (Thal_IL_R), SVM distinguished the PIGD group from the other groups with satisfactory diagnostic rates (accuracy = 89.47%, sensitivity = 70.00%, specificity = 6.43%, and AUCmax = 0.9464). These results are consistent with the changes in blood perfusion related to PD subtypes. In addition, the sensitive brain regions of the TD group and PIGD group involve the brain regions where the cerebellothalamocortical (CTC) and the striatal thalamocortical (STC) loops are located. Therefore, it is suggested that the blood perfusion patterns of the two loops may be different. These characteristic brain regions could become potential imaging markers of cerebral blood flow to distinguish TD from PIGD. Meanwhile, our findings provide an imaging basis for personalised treatment, thereby optimising clinical diagnostic and treatment approaches.

Funder

Science and Technology Commission of Shanghai Municipality

Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3