An In Vitro Brain Tumour Model in Organotypic Slice Cultures Displaying Epileptiform Activity

Author:

Chong Harvey K.1,Ma Ziang1,Wong Kendrew Ka Chuon1,Morokoff Andrew12ORCID,French Chris12ORCID

Affiliation:

1. Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, VIC 3052, Australia

2. Department of Medicine, Royal Melbourne Hospital, Parkville, Melbourne, VIC 3000, Australia

Abstract

Brain tumours have significant impacts on patients’ quality of life, and current treatments have limited effectiveness. To improve understanding of tumour development and explore new therapies, researchers rely on experimental models. However, reproducing tumour-associated epilepsy (TAE) in these models has been challenging. Existing models vary from cell lines to in vivo studies, but in vivo models are resource-intensive and often fail to mimic crucial features like seizures. In this study, we developed a technique in which normal rat organotypic brain tissue is implanted with an aggressive brain tumour. This method produces a focal invasive lesion that preserves neural responsiveness and exhibits epileptiform hyperexcitability. It allows for real-time imaging of tumour growth and invasion for up to four weeks and microvolume fluid sampling analysis of different regions, including the tumour, brain parenchyma, and peritumoral areas. The tumour cells expand and infiltrate the organotypic slice, resembling in vivo behaviour. Spontaneous seizure-like events occur in the tumour slice preparation and can be induced with stimulation or high extracellular potassium. Furthermore, we assess extracellular fluid composition in various regions of interest. This technique enables live cell confocal microscopy to record real-time tumour invasion properties, whilst maintaining neural excitability, generating field potentials, and epileptiform discharges, and provides a versatile preparation for the study of major clinical problems of tumour-associated epilepsy.

Funder

Australian Brain Foundation

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3