Elevated Hexose-6-Phosphate Dehydrogenase Regulated by OSMR-AS1/hsa-miR-516b-5p Axis Correlates with Poor Prognosis and Dendritic Cells Infiltration of Glioblastoma

Author:

Zhang Yi-Bin,Zheng Shu-Fa,Ma Lin-Jie,Lin Peng,Shang-Guan Huang-Cheng,Lin Yuan-Xiang,Kang De-Zhi,Yao Pei-SenORCID

Abstract

Objective Glioblastoma (GBM), a type of malignant glioma, is the most aggressive type of brain tumor and is associated with high mortality. Hexose-6-phosphate dehydrogenase (H6PD) has been detected in multiple tumors and is involved in tumor initiation and progression. However, the specific role and mechanism of H6PD in GBM remain unclear. Methods We performed pan-cancer analysis of expression and prognosis of H6PD in GBM using the Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA). Subsequently, noncoding RNAs regulating H6PD expression were obtained by comprehensive analysis, including gene expression, prognosis, correlation, and immune infiltration. Finally, tumor immune infiltrates related to H6PD and survival were performed. Results Higher expression of H6PD was statistically significantly associated with an unfavorable outcome in GBM. Downregulation of hsa-miR-124-3p and hsa-miR-516b-5p in GBM was detected from GSE90603. Subsequently, OSMR-AS1 was observed in the regulation of H6PD via hsa-miR-516b-5p. Moreover, higher H6PD expression significantly correlated with immune infiltration of dendritic cells, immune checkpoint expression, and biomarkers of dendritic cells. Conclusions The OSMR-AS1/ miR-516b-5p axis was identified as the highest-potential upstream ncRNA-related pathway of H6PD in GBM. Furthermore, the present findings demonstrated that H6PD blockading might possess antitumor roles via regulating dendritic cell infiltration and immune checkpoint expression.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3