Computer-Aided Diagnosis System of Alzheimer's Disease Based on Multimodal Fusion: Tissue Quantification Based on the Hybrid Fuzzy-Genetic-Possibilistic Model and Discriminative Classification Based on the SVDD Model

Author:

Lazli ,Boukadoum ,Ait Mohamed

Abstract

: An improved computer-aided diagnosis (CAD) system is proposed for the early diagnosis of Alzheimer’s disease (AD) based on the fusion of anatomical (magnetic resonance imaging (MRI)) and functional (8F-fluorodeoxyglucose positron emission tomography (FDG-PET)) multimodal images, and which helps to address the strong ambiguity or the uncertainty produced in brain images. The merit of this fusion is that it provides anatomical information for the accurate detection of pathological areas characterized in functional imaging by physiological abnormalities. First, quantification of brain tissue volumes is proposed based on a fusion scheme in three successive steps: modeling, fusion and decision. (1) Modeling which consists of three sub-steps: the initialization of the centroids of the tissue clusters by applying the Bias corrected Fuzzy C-Means (FCM) clustering algorithm. Then, the optimization of the initial partition is performed by running genetic algorithms. Finally, the creation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) tissue maps by applying the Possibilistic FCM clustering algorithm. (2) Fusion using a possibilistic operator to merge the maps of the MRI and PET images highlighting redundancies and managing ambiguities. (3) Decision offering more representative anatomo-functional fusion images. Second, a support vector data description (SVDD) classifier is used that must reliably distinguish AD from normal aging and automatically detects outliers. The "divide and conquer" strategy is then used, which speeds up the SVDD process and reduces the load and cost of the calculating. The robustness of the tissue quantification process is proven against noise (20% level), partial volume effects and when inhomogeneities of spatial intensity are high. Thus, the superiority of the SVDD classifier over competing conventional systems is also demonstrated with the adoption of the 10-fold cross-validation approach for synthetic datasets (Alzheimer disease neuroimaging (ADNI) and Open Access Series of Imaging Studies (OASIS)) and real images. The percentage of classification in terms of accuracy (%), sensitivity (%), specificity (%) and area under ROC curve was 93.65%, 90.08%, 92.75% and 0.973; 91.46%, 92%, 91.78% and 0.967; 85.09%, 86.41%, 84.92% and 0.946 in the case of the ADNI, OASIS and real images respectively.

Publisher

MDPI AG

Subject

General Neuroscience

Reference63 articles.

1. World Alzheimer Report 2018 The state of the art of dementia research: New frontiers (Alzheimer’s Disease International (ADI))https://www.alz.co.uk/news/world-alzheimer-report-2018-state-of-art-of-dementia-research-new-frontiers

2. Risk Factors for Progression of Alzheimer Disease in a Canadian Population: The Canadian Outcomes Study in Dementia (COSID)

3. Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-bernstein polynomials algorithm;Biagetti,2019

4. Neuroimaging computer-aided diagnosis systems for Alzheimer's disease

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3