Vibration-Induced Alteration in Trunk Extensor Muscle Proprioception as a Model for Impaired Trunk Control in Low Back Pain

Author:

Gilliam John R.1ORCID,Mandal Debdyuti2ORCID,Wattananon Peemongkon3ORCID,Banerjee Sourav2ORCID,Herter Troy M.4,Silfies Sheri P.1ORCID

Affiliation:

1. Applied Neuromechanics Lab, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA

2. Integrated Material Assessment and Predictive Simulation Laboratory (i-MAPS), Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

3. Motor Control and Neural Plasticity Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom 73170, Thailand

4. Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA

Abstract

This study examined the impact of personalizing muscle vibration parameters on trunk control. We assessed how altered trunk extensor muscle (TEM) proprioception affects seated trunk control in healthy controls (HCs). To explore the link between altered TEM proprioception and impaired trunk control in chronic low back pain (cLBP), we performed equivalence testing between HCs undergoing TEM vibration and cLBP without vibration. Twenty HCs performed active joint reposition error (AJRE) testing to determine personalized vibration parameters. Each participant maintained balance on an unstable chair with eyes open and closed, with and without TEM vibration. We compared trunk control between HCs and twenty age- and sex-matched cLBP participants, using mean velocity and 95% confidence ellipse area of center-of-pressure changes to quantify trunk postural control. Equivalence was examined by comparing mean difference scores to minimal detectable change values and calculating between-group effect sizes. Personalized vibration parameters led to larger lumbopelvic repositioning errors (d = 0.89) than any single vibration frequency (d = 0.31–0.36). In healthy adults with no back pain, vision had large effects on postural control (ηp2 = 0.604–0.842), but TEM vibration had no significant effects (p > 0.105) or interactions with vision (p > 0.423). Between-group effect sizes (d = 0.32–0.51) exceeded our threshold for performance equivalence (d < 0.2). Muscle vibration altered position sense during AJRE testing, and personalizing parameters amplified this effect. However, TEM vibration had minimal impact on seated trunk postural control in adults with no back pain and did not lead to performance degradation comparable to that in cLBP.

Funder

NIH-NICHD

NIH-NIGMS

a Promotion of Doctoral Studies (PODS) II Scholarship from the Foundation for Physical Therapy Research

a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3