Affiliation:
1. Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Campus Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Abstract
Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has attracted increasing interest as a neurostimulation tool with potential applications in modulating cognitive processes such as attention and memory, possibly through the modulation of the locus–coeruleus noradrenaline system. Studies examining the P300 brain-related component as a correlate of noradrenergic activity, however, have yielded inconsistent findings, possibly due to differences in stimulation parameters, thus necessitating further investigation. In this event-related potential study involving 61 participants, therefore, we examined how changes in taVNS parameters, specifically stimulation type (interval vs. continuous stimulation) and duration, influence P300 amplitudes during a visual novelty oddball task. Although no effects of stimulation were found over the whole cluster and time window of the P300, cluster-based permutation tests revealed a distinct impact of taVNS on the P300 response for a small electrode cluster, characterized by larger amplitudes observed for easy targets (i.e., stimuli that are easily discernible from standards) following taVNS compared to sham stimulation. Notably, our findings suggested that the type of stimulation significantly modulated taVNS effects on the P300, with continuous stimulation showing larger P300 differences (taVNS vs. sham) for hard targets and standards compared to interval stimulation. We observed no interaction effects of stimulation duration on the target-related P300. While our findings align with previous research, further investigation is warranted to fully elucidate the influence of taVNS on the P300 component and its potential utility as a reliable marker for neuromodulation in this field.