IDAF: Iterative Dual-Scale Attentional Fusion Network for Automatic Modulation Recognition

Author:

Liu Bohan1ORCID,Ge Ruixing1,Zhu Yuxuan1,Zhang Bolin2,Zhang Xiaokai3,Bao Yanfei1

Affiliation:

1. Institute of Systems Engineering, Academy of Military Science of the People’s Liberation Army, Beijing 100083, China

2. National Key Laboratory of Science and Technology on Communication, University of Electronic Science and Technology of China, Chengdu 611731, China

3. College of Communications and Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract

Recently, deep learning models have been widely applied to modulation recognition, and they have become a hot topic due to their excellent end-to-end learning capabilities. However, current methods are mostly based on uni-modal inputs, which suffer from incomplete information and local optimization. To complement the advantages of different modalities, we focus on the multi-modal fusion method. Therefore, we introduce an iterative dual-scale attentional fusion (iDAF) method to integrate multimodal data. Firstly, two feature maps with different receptive field sizes are constructed using local and global embedding layers. Secondly, the feature inputs are iterated into the iterative dual-channel attention module (iDCAM), where the two branches capture the details of high-level features and the global weights of each modal channel, respectively. The iDAF not only extracts the recognition characteristics of each of the specific domains, but also complements the strengths of different modalities to obtain a fruitful view. Our iDAF achieves a recognition accuracy of 93.5% at 10 dB and 0.6232 at full signal-to-noise ratio (SNR). The comparative experiments and ablation studies effectively demonstrate the effectiveness and superiority of the iDAF.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3