Role of TiO2 Nanoparticles in Wet Friction and Wear Properties of PEO Coatings Developed on Pure Titanium

Author:

Molaei Maryam1,Fattah-Alhosseini Arash1ORCID,Nouri Meisam1,Kaseem Mosab2ORCID

Affiliation:

1. Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran

2. Corrosion and Electrochemistry Laboratory, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

Abstract

The present study aims to explain how the incorporation of anatase TiO2 nanoparticles at three different concentrations, i.e., 1, 3, and 5 g/L, into the ceramic-like oxide plasma electrolytic oxidation (PEO) coatings on pure titanium substrate can affect the friction and wear behavior of the coatings in simulated body fluid (SBF) aqueous solution. For this purpose, a ball-on-disk friction and wear tester was utilized to characterize the wear performance of the PEO coatings. The morphology and dimensions (width and depth) of wear tracks were analyzed by scanning electron microscopy (SEM) and 2D depth profilometry, respectively. The results indicated that abrasive wear was identified in all PEO coatings; however, the coefficient of friction (COF), wear volume loss, and wear rate were strongly affected by the concentration of TiO2 nanoparticles. The coatings containing TiO2 nanoparticles presented a lower COF, less wear volume loss, reduced wear rate, and improved wear resistance due to having smoother surfaces and the presence of hard TiO2 nanoparticles on their surfaces and inside the pores. The coating with 3 g/L of TiO2 nanoparticles demonstrated the lowest wear rate value of 1.33 × 10−6 mm3/Nm (about a 32% reduction compared with that of coating without TiO2 nanoparticles) and the best wear protection properties among all coatings under investigation. The findings suggest TiO2 nanoparticles incorporated PEO coatings as a promising choice of surface treatment wherein the load-bearing capacity of titanium implants is critical.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3