Active and Passive Thermal Management in Wire Arc Additive Manufacturing

Author:

Nagallapati Vishwanath1ORCID,Khare Vivek Kumar1,Sharma Abhay12ORCID,Simhambhatla Suryakumar1ORCID

Affiliation:

1. Indian Institute of Technology Hyderabad, Sangareddy 502284, India

2. Faculty of Engineering Technology, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne-Waver, 3001 Leuven, Belgium

Abstract

This article presents innovative approaches for managing residual stresses and distortion in additive manufacturing (AM) of metal components (baseplate material: EN8; filler wire material: ER70S-6). The experiments are conducted with two approaches for thermal management—passive and active. The passive approach of experiments is performed by varying the selected process parameters to study their effect on residual stresses and distortion. The chosen parameters are current, torch speed, geometry, continuous or a delay in the deposition, and cooling arrangement. Based on the understanding gained from the passive approach, the active approach of thermal management was implemented by insulating the substrate with and without adaptive current and heating the substrate. The experimental results were corroborated with the simulation to understand the process better. A comparative study for hardness was made based on the T8/5 extracted from the simulation. These experiments and simulations endorse passive and active thermal management as effective tools that can alter the distortion and residual stress pattern and the mechanical properties of an AM component. The investigation concludes that the process parameters that lead to higher heat input vis-à-vis an increase in current or a decrease in speed increase the distortion. On the other hand, the parameters that affect the rate of heat distribution vis-à-vis torch speed and geometry affect the residual stresses. When current, traverse speed and a/b ratio were kept the same, active thermal management with a heated base reduced distortion from 1.226 mm to 0.431 mm, a 65% reduction compared to passive thermal management. Additionally, the maximum residual stress was reduced from 492.31 MPa to 250.68 MPa, with residual stresses decreasing from 418.57 MPa to 372 MPa. Overall, active thermal management resulted in a 63% reduction in distortion, lowering it from 1.35 mm to 0.50 mm using external heating. The components that are difficult to complete because of the in-process distortion are expected to be manufactured with thermal management, e.g., heating the substrate is an effective measure to manage the in-process distortion. Thermal management techniques depend on geometry; for instance, a concave surface, because of self-heating, reduces the cooling rate and has relatively less variation in hardness.

Funder

The Boeing Company

Indian Institute of Technology Hyderabad

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3