Optimization of Multiple Performance Characteristics for CNC Turning of Inconel 718 Using Taguchi–Grey Relational Approach and Analysis of Variance

Author:

Zhujani Fatlume1ORCID,Abdullahu Fitore1,Todorov Georgi2,Kamberov Konstantin2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Pristina “Hasan Prishtina”, 10000 Pristina, Kosovo

2. Faculty of Industrial Technology-Bulgaria, Technical University of Sofia, 1756 Sofia, Bulgaria

Abstract

The optimization of machining processes is a deciding factor when increasing productivity and ensuring product quality. The response characteristics, such as surface roughness, material removal rate, tool wear, and cutting time, of the finish turning process have been simultaneously optimized. We used the Taguchi-based design of experiments L9(34) in this study to test and find the best values for process parameters like cutting speed, feed rate, depth of cut, and nose radius. The Taguchi-based multi-objective grey relational approach (GRA) method was used to address the turning problem of Inconel 718 alloy to increase productivity, i.e., by simultaneously minimizing surface roughness, tool wear, and machining time. GRA and the S/N ratio derived from the Taguchi approach were utilized to combine many response characteristics into a single response. The grey relational grade (GRG) produces results such as estimations of the optimal level of input parameters and their proportional significance to specific quality characteristics. By employing ANOVA, the significance of parameters with respect to individual responsibility and the overall quality characteristics of the cutting process were ascertained. The single-objective optimization yielded the following results: minimal surface roughness of 0.167 µm, tool wear of 44.65 µm, minimum cutting time of 19.72 s, and maximum material speed of 4550 mm3/min. While simultaneously optimizing the Inconel 718 superalloy at a cutting speed of 100 m/min, depth of cut of 0.4 mm, feed rate of 0.051 mm/rev, and tool nose radius of 0.4 mm, the results of the multi-objective optimization showed that all investigated response characteristics reached their optimal values (minimum/maximum). To validate the results, confirmatory experiments with the most favorable outcomes were conducted and yielded a high degree of concurrence.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3