Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-κB Signaling, and Synergizes with Gemcitabine Cytotoxicity

Author:

Karelia Deepkamal N.,Kim SangyubORCID,K. Pandey Manoj,Plano DanielORCID,Amin Shantu,Lu Junxuan,Sharma Arun K.ORCID

Abstract

Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-κB) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-α)-stimulated NF-κB nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of κB (IκB) protein. As NF-κB activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy.

Funder

National Cancer Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey;International Journal of Molecular Sciences;2024-07-16

2. Organoselenium Compounds in Medicinal Chemistry;ChemMedChem;2024-07-12

3. Trace elements in pancreatic cancer;Cancer Medicine;2024-07

4. Selenization of Small Molecule Drugs: A New Player on the Board;Journal of Medicinal Chemistry;2024-05-08

5. Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives;International Journal of Molecular Sciences;2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3