Detection and Recognition Algorithm of Arbitrary-Oriented Oil Replenishment Target in Remote Sensing Image

Author:

Hou Yongjie,Yang Qingwen,Li Li,Shi Gang

Abstract

In view of the fact that the aerial images of UAVs are usually taken from a top-down perspective, there are large changes in spatial resolution and small targets to be detected, and the detection method of natural scenes is not effective in detecting under the arbitrary arrangement of remote sensing image direction, which is difficult to apply to the detection demand scenario of road technology status assessment, this paper proposes a lightweight network architecture algorithm based on MobileNetv3-YOLOv5s (MR-YOLO). First, the MobileNetv3 structure is introduced to replace part of the backbone network of YOLOv5s for feature extraction so as to reduce the network model size and computation and improve the detection speed of the target; meanwhile, the CSPNet cross-stage local network is introduced to ensure the accuracy while reducing the computation. The focal loss function is improved to improve the localization accuracy while increasing the speed of the bounding box regression. Finally, by improving the YOLOv5 target detection network from the prior frame design and the bounding box regression formula, the rotation angle method is added to make it suitable for the detection demand scenario of road technology status assessment. After a large number of algorithm comparisons and data ablation experiments, the feasibility of the algorithm was verified on the Xinjiang Altay highway dataset, and the accuracy of the MR-YOLO algorithm was as high as 91.1%, the average accuracy was as high as 92.4%, and the detection speed reached 96.8 FPS. Compared with YOLOv5s, the p-value and mAP values of the proposed algorithm were effectively improved. It can be seen that the proposed algorithm improves the detection accuracy and detection speed while greatly reducing the number of model parameters and computation.

Funder

National Natural Science Foundation of China

the Third Xinjiang Scientific Expedition Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation;Mohammad;Smart Mater. Struct.,2013

2. Automated inspection and restoration of steel bridges—A critical review of methods and enabling technologies;McCrea;Autom. Constr.,2002

3. Computer vision techniques for construction safety and health monitoring;JoonOh;Adv. Eng. Inform.,2015

4. Chen, J., Wu, J., Chen, G., Dong, W., and Sheng, X. (2016). International Conference on Intelligent Robotics and Applications, Springer.

5. ImageNet classification with deep convolutional neural networks;Alex;Commun. ACM,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3