Velocity Measurements in Highly Aerated Flow on a Stepped Chute without Sidewall Constraint Using a BIV Technique

Author:

Sánchez-Juny MartíORCID,Estrella Soledad,Matos JorgeORCID,Bladé ErnestORCID,Martínez-Gomariz EduardoORCID,Bonet Gil Enrique

Abstract

The lack of sidewalls in a spillway leads to lateral expansion of the flow and, consequently, a non-uniform transversal flow rate distribution along the chute. The present work shows the velocity field measured in a physical model of a 1 V:0.8 H steeply sloping stepped spillway without sidewalls. An application of a Bubble Image Velocimetry (BIV) technique in the self-aerated region is shown, using air bubbles entrained into the flow downstream of the inception point as tracers. The results indicate that, for small dimensionless discharges and sufficiently downstream of the point of inception, the free-surface velocity compares relatively well with the corresponding air–water interfacial velocity previously obtained with a double-tip fiber optical probe in the same facility. In turn, the velocity profiles along the normal to the pseudo-bottom, far downstream of the inception point, are reasonably in agreement with the air–water interfacial velocity profiles in the inner part of the skimming flow, with the largest differences being verified in the upper skimming flow region near the free-surface.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference46 articles.

1. The Hydraulics of Stepped Chutes and Spillways;Chanson,2002

2. Stepped Spillways and Cascades;Chanson,2015

3. Guidelines for the Hydraulic Design of Stepped Spillways;Frizell,2015

4. Hydraulic Engineering of Dams;Hager,2020

5. Experimental study of transition and skimming flows on stepped spillways in RCC dams: qualitative analysis and pressure measurements

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3