Multi-Sonar Distributed Fusion for Target Detection and Tracking in Marine Environment

Author:

Chen RoujieORCID,Li Tingting,Memon ImranORCID,Shi YifangORCID,Ullah Ihsan,Memon Sufyan AliORCID

Abstract

The multi-sonar distributed fusion system has been pervasively deployed to jointly detect and track marine targets. In the realistic scenario, the origin of locally transmitted tracks is uncertain due to clutter disturbance and the presence of multi-target. Moreover, attributed to the different sonar internal processing times and diverse communication delays between sonar and the fusion center, tracks unavoidably arrive in the fusion center with temporal out-of-sequence (OOS), both problems pose significant challenges to the fusion system. Under the distributed fusion framework with memory, this paper proposes a novel multiple forward prediction-integrated equivalent measurement fusion (MFP-IEMF) method, it fuses the multi-lag OOST with track origin uncertainty in an optimal manner and is capable to be implemented in both the synchronous and asynchronous multi-sonar tracks fusion system. Furthermore, a random central track initialization technique is also proposed to detect the randomly born marine target in time via quickly initiating and confirming true tracks. The numerical results show that the proposed algorithm achieves the same optimality as the existing OOS reprocessing method, and delivers substantially improved detection and tracking performance in terms of both ANCTT and estimation accuracy compared to the existing OOST discarding fusion method and the ANF-IFPFD method.

Funder

National Natural Science Foundation of China

Science and Technology on Information System Engineering Laboratory

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3