A Hybrid GA–MLPNN Model for One-Hour-Ahead Forecasting of the Global Horizontal Irradiance in Elizabeth City, North Carolina

Author:

Jadidi Aydin,Menezes Raimundo,de Souza Nilmar,de Castro Lima Antonio

Abstract

The use of photovoltaics is still considered to be challenging because of certain reliability issues and high dependence on the global horizontal irradiance (GHI). GHI forecasting has a wide application from grid safety to supply–demand balance and economic load dispatching. Given a data set, a multi-layer perceptron neural network (MLPNN) is a strong tool for solving the forecasting problems. Furthermore, noise detection and feature selection in a data set with numerous variables including meteorological parameters and previous values of GHI are of crucial importance to obtain the desired results. This paper employs density-based spatial clustering of applications with noise (DBSCAN) and non-dominated sorting genetic algorithm II (NSGA II) algorithms for noise detection and feature selection, respectively. Tuning the neural network is another important issue that includes choosing the hidden layer size and activation functions between the layers of the network. Previous studies have utilized a combination of different parameters based on trial and error, which seems to be inefficient in terms of accurate selection of the desired features and also tuning of the neural network. In this research, two different methods—namely, particle swarm optimization (PSO) algorithm and genetic algorithm (GA)—are utilized in order to tune the MLPNN, and the results of one-hour-ahead forecasting of the GHI are subsequently compared. The methodology is validated using the hourly data for Elizabeth City located in North Carolina, USA, and the results demonstrated a better performance of GA in comparison with PSO. The GA-tuned MLPNN reported a normalized root mean square error (nRMSE) of 0.0458 and a normalized mean absolute error (nMAE) of 0.0238.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3