Band-Sensitive Calibration of Low-Cost PM2.5 Sensors by LSTM Model with Dynamically Weighted Loss Function

Author:

Ryu JewanORCID,Park Heekyung

Abstract

Particulate matter has become one of the major issues in environmental sustainability, and its accurate measurement has grown in importance recently. Low-cost sensors (LCS) have been widely used to measure particulate concentration, but concerns about their accuracy remain. Previous research has shown that LCS data can be successfully calibrated using various machine learning algorithms. In this study, for better calibration, dynamic weight was introduced to the loss function of the LSTM model to amplify the loss, especially in a specific band. Our results showed that the dynamically weighted loss function resulted in better calibration in the specific band, where the model accepts the loss more sensitively than outside of the band. It was also confirmed that the dynamically weighted loss function can improve the calibration of the LSTM model in terms of both overall performance and local performance in bands. In a test case, the overall calibration performance was improved by about 12.57%, from 3.50 to 3.06, in terms of RMSE. The local calibration performance in the band improved from 4.25 to 3.77. Such improvements were achieved by varying coefficients of the dynamic weight. The results from different bands also indicated that having more data in a band will guarantee better improvement.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm;PeerJ;2024-08-06

2. Improving Carbon Emission Predictions with NLP and LSTM Integration;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

3. Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep Learning;ACS ES&T Air;2024-03-27

4. Dynamic Binary Cross Entropy: An effective and quick method for model convergence;2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3