Thermodynamic Constraints on Smectite and Iron Oxide Formation at Gale Crater, Mars: Insights into Potential Free Energy from Aerobic Fe Oxidation in Lake Water–Groundwater Mixing Zone

Author:

Kikuchi Sakiko,Shibuya Takazo

Abstract

The presence of saponite and iron oxides in Sheepbed mudstone of Yellowknife Bay at Gale crater on Mars is considered as evidence of a habitable fluvio-lacustrine environment for chemolithoautotrophy. However, the energetic availability for metabolic reactions is poorly constrained. Herein, we propose the possible mixing of surface water and groundwater that (i) explains the formation of magnetite and hematite detected in Sheepbed mudstone and (ii) may work as a potential habitable zone for aerobic Fe2+-oxidizing microbes. Our thermodynamic modeling of water–rock reactions revealed that the formation of abundant saponite in Sheepbed mudstone may occur under various conditions of water-to-rock mass ratios, temperatures (5–200 °C), and initial fluid compositions. In contrast, the formation of iron oxides in the mudstone can be explained only by the mixing of Fe2+-rich groundwater and more oxidized surface waters, where the Fe2+-rich groundwater can be generated by the low-temperature water–rock reactions with a CO2-bearing initial fluid. The calculated bioavailable energy of aerobic Fe2+ oxidation in the fluid-mixing zone on Mars is similar to that estimated for a fluid-mixing zone on Earth actually inhabited by aerobic Fe2+-oxidizing microbes. The findings will contribute to a better understanding of potential habitability on Mars.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3