Author:
Kikuchi Sakiko,Shibuya Takazo
Abstract
The presence of saponite and iron oxides in Sheepbed mudstone of Yellowknife Bay at Gale crater on Mars is considered as evidence of a habitable fluvio-lacustrine environment for chemolithoautotrophy. However, the energetic availability for metabolic reactions is poorly constrained. Herein, we propose the possible mixing of surface water and groundwater that (i) explains the formation of magnetite and hematite detected in Sheepbed mudstone and (ii) may work as a potential habitable zone for aerobic Fe2+-oxidizing microbes. Our thermodynamic modeling of water–rock reactions revealed that the formation of abundant saponite in Sheepbed mudstone may occur under various conditions of water-to-rock mass ratios, temperatures (5–200 °C), and initial fluid compositions. In contrast, the formation of iron oxides in the mudstone can be explained only by the mixing of Fe2+-rich groundwater and more oxidized surface waters, where the Fe2+-rich groundwater can be generated by the low-temperature water–rock reactions with a CO2-bearing initial fluid. The calculated bioavailable energy of aerobic Fe2+ oxidation in the fluid-mixing zone on Mars is similar to that estimated for a fluid-mixing zone on Earth actually inhabited by aerobic Fe2+-oxidizing microbes. The findings will contribute to a better understanding of potential habitability on Mars.
Funder
Japan Society for the Promotion of Science
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献