The Influences of Dehydration on the Mechanical Properties of Human Dentin

Author:

Chowdhury Abu Faem Mohammad AlmasORCID,Alam ArefinORCID,Islam MD Refat Readul,Yamauti Monica,Alam Mohammad Shafiqul,Rahman Mohammad MusfiqurORCID,Asad-Uz-Zaman ,Ahmed Mohiuddin,Álvarez-Lloret Pedro,Sano Hidehiko

Abstract

The complex, dynamic, and hydrated microstructures of human dentin serve as the major determinant for the restorative performance of biomaterials. This study aimed to evaluate the mechanical properties of human dentin under different hydration conditions. The occlusal dentin of five third molars was exposed and cut into 1 mm2 dentin slabs. The slabs were then polished and further cut into 1 mm2 dentin beams and stored in distilled water. Two beams/tooth were used for testing their hardness (H) and elastic modulus (E) at 5 min (baseline), 1 h, and 24 h after dehydration (23 °C and 30% RH), and also for measuring weight at following dehydration times: 0 min, 5 min, 1 h, and 24 h. Five additional molars were employed to prepare 0.4 mm2 dentin beams (3/tooth) for determining ultimate tensile strength (UTS) at 5 min (baseline), 1 h, and 24 h post-dehydration. Statistical significance was set at α = 0.05. Dehydration time significantly affected H, E, weight-loss, and UTS of dentin (p < 0.05). H and E values showed a strongly positive and significant correlation (r > 0.5, p < 0.05). Dehydration can substantially modify the mechanical properties of dentin, leading to misinterpretation of restorative outcomes in vitro.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The multi-scale meso-mechanics model of viscoelastic dentin;Journal of the Mechanical Behavior of Biomedical Materials;2022-12

2. The Influence of Ferrule on the Marginal Gap and Fracture Resistance of Zirconia Endocrowns;The International Journal of Prosthodontics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3