A Trading Mode Based on the Management of Residual Electric Energy in Electric Vehicles

Author:

Wang Xiuli1ORCID,Wei Junkai1ORCID,Wen Fushuan2ORCID,Wang Kai3

Affiliation:

1. School of Electric Power and Architecture, Shanxi University, Taiyuan 030006, China

2. School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

3. State Grid Shanxi Electric Power Company, Taiyuan 030021, China

Abstract

Aiming at the distributed resources of electric vehicles with photovoltaics (PVs) on the user side, a trading mode of surplus energy sharing for electric vehicles based on the user-side PVs is proposed by utilizing the bidirectional mobility of information and energy. Power transfer can be implemented between different electric vehicle users through vehicle-to-grid (V2G) technology with a reasonable distribution of benefits taken into account. First, the operational framework of electric energy trading is presented, and the transmission architecture of each body of interest in the system is analyzed. Second, the portraits of EV users’ charging behaviors are established considering their different charging habits, and electric vehicle users are divided into electricity buyers and sellers in each trading time period. An electricity transaction model based on “multi-seller–multi-buyer” is established, and all electricity transactions are realized through blockchain-based decentralized technology. Finally, the benefit to each interest group is maximized using the improved Northern Goshawk Optimization (NGO) algorithm. Simulation results of a sample system indicate that the new power trading mode proposed in this study could lead to reasonable reuse of the electric energy of private electric vehicles and can achieve a win–win situation for all stakeholders.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. The Central People’s Government of the People’s Republic of China (2023, January 12). China’s Total Automobile Production and Sales Have Ranked First in the World for 14 Consecutive Years [EB/OL], (In Chinese).

2. Optimal Scheduling Strategy of Electric Vehicle Cluster Based on Index Evaluation System;Yue;IEEE Trans. Ind. Appl.,2023

3. Jonas, T., Daniels, N., and Macht, G. (2023). Electric Vehicle User Behavior: An Analysis of Charging Station Utilization in Canada. Energies, 16.

4. Daily electric vehicle charging load profiles considering demographics of vehicle users;Zhang;Appl. Energy,2020

5. Robust location and sizing of electric vehicle battery swapping stations considering users’ choice behaviors;Zhang;J. Energy Storage,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3