Design and Control of Multicoil Active Magnetic Bearing System for High-Speed Application

Author:

Debnath Sukanta1,Das Upama1,Biswas Pabitra Kumar1ORCID,Aljafari Belqasem2ORCID,Thanikanti Sudhakar Babu3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, National Institute of Technology Mizoram, Aizawl 796012, India

2. Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia

3. Department of Electrical and Electronics Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India

Abstract

In the rotating machinery sector, active magnetic bearing (AMB) has drawn great attention due to its benefits over the conventional bearing system. The high-speed technology is enhanced by AMBs, which also reduce maintenance costs and eliminate friction loss. This paper presents a unique, simpler, efficient design and hardware implementation for high-speed applications using two-coil I-type active magnetic bearings. To maintain the 10 mm air gap between the actuator and the rotor, two categories of controllers have been designed for the proposed system to control the position and another for detecting the coil current through the power amplifier. The AMB system is incorporated into a 3D finite element model for determining magnetic properties. The magnetic analysis is then carried out under various situations, and the attractive force characteristics have been evaluated for this suggested system to check the performance of the multicoil AMB system along with the stability analysis. The system is designed and simulated in MATLAB Simulink and implemented in hardware to validate the different outputs viz. position response and current response. Finally, an AC magnet is designed to rotate the rotor after the levitation, and a higher speed of 19,643 rpm is achieved in comparison to conventional bearings, which can be utilized in different industrial applications.

Funder

Deanship of Scientific Research at Najran University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3