Control Configurations for Reactive Power Compensation at the Secondary Side of the Low Voltage Substation by Using Hybrid Transformer

Author:

Radi MohammedORCID,Darwish Mohamed,Taylor Gareth,Pisica Ioana

Abstract

The high penetration of new device technologies, such as Electric Vehicles (EV), and Distributed Generation (DG) in Distribution Networks (DNs) has risen new consumption requirements. In this context, it becomes crucial to implement a flexible, functional and fast responsive management of the voltage level and Reactive Power (RP) in the DN. The latest improvements in the Solid State Switches (SSS) field demonstrate they can be used as a Power Electronic (PE) converter. In particular, they have been shown to be capable of operating synchronously with transformers, making the Hybrid Distribution Transformer (HT) concept a potential and cost-effective solution to various DN control issues. In this paper, a HT-based approach consisting of augmenting the conventional Low Voltage (LV) transformer with a fractionally rated PE converter for regulating and controlling the RP in the last mile of the DN is proposed. In this way, it is expected to meet the demand of the future DN from an efficiency, controllability and volume perspective. The proposed approach is implemented using a back-to-back converter. In addition, a power transfer control topology is used to implement the proposed control of the RP injection that controls the voltage level at the Direct Current (DC) link. The proposed approach has been demonstrated in different load scenarios using the Piecewise Linear Electrical Circuit Simulation (PLECS) tool. The simulation results show that the proposed approach can compensate the loads with their need from RP instead of feeding them from the transmission grid at the primary side of the Distribution Transformer (DT). In this way, the proposed approach is able to decrease the transferred amount of RP in the transmission lines.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Coordination Control Method of Multi-Port Solid-State Transformer Against Power Fluctuations;2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG);2023-12-03

2. Design of Comprehensive Automatic Control Algorithm for Voltage and Reactive Power of Substation Based on Fuzzy Neural Network;2023 International Conference on Computer Simulation and Modeling, Information Security (CSMIS);2023-11-15

3. Research on Multi-scene and Multi-terminal Joint Inspection Method of Substation Based on Machine Vision;2023 3rd International Symposium on Artificial Intelligence and Intelligent Manufacturing (AIIM);2023-10-27

4. Voltage Control in LV Distribution Grid Using AC Voltage Compensator with Bipolar AC/AC Matrix Choppers;Applied Sciences;2023-07-28

5. Harmonic current variation characteristics of shunt capacitors based on full-phase FFT algorithm;Applied Mathematics and Nonlinear Sciences;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3