A Soluble Porous Coordination Polymer for Fluorescence Sensing of Explosives and Toxic Anions under Homogeneous Environment

Author:

Jiang Jiang1,Li Zi-Wei2,Wu Zhao-Feng2ORCID,Huang Xiao-Ying2ORCID

Affiliation:

1. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China

Abstract

In the past decades, porous coordination polymers (PCPs) based fluorescent (FL) sensors have received intense attention due to their promising applications. In this work, a soluble Zn-PCP is presented as a sensitive probe towards explosive molecules, chromate, and dichromate ions. In former reports, PCP sensors were usually ground into fine powders and then dispersed in solvents to form FL emulsion for sensing applications. However, their insoluble characters would cause the sensing accuracy which is prone to interference from environmental effects. While in this work, the as-made PCP could be directly soluble in organic solvents to form a clear solution with bright blue emission, representing the first soluble PCP based fluorescence sensor to probe explosive molecules under a homogeneous environment. Moreover, the FL PCP solution also shows sensitive detection behaviors towards the toxic anions of CrO42− and Cr2O72−, which exhibit a good linear relationship between the fluorescence intensity of Zn-PCP and the concentrations of both analytes. This work provides a reference for designing task-specific PCP sensors utilized under a homogeneous environment.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3