A Novel Mine-Specific Eco-Environment Index (MSEEI) for Mine Ecological Environment Monitoring Using Landsat Imagery

Author:

Zhang Peipei12,Chen Xidong2,Ren Yu3,Lu Siqi4,Song Dongwei5,Wang Yingle6

Affiliation:

1. Henan Institute of Surveying and Mapping, Zhengzhou 450003, China

2. College of Surveying and Mapping and Geographic Information, North China University of Water Resources and Electric, Zhengzhou 450045, China

3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

4. Department of Geography, University of Connecticut, Storrs, CT 06269-4148, USA

5. No.7 Geological Party, Henan Nonferrous Metals Geological and Mineral Bureau, Zhengzhou 450016, China

6. Henan Institue of Remote Sensing and Geomatics, Zhengzhou 450003, China

Abstract

The excessive exploitation of mineral resources will lead to environmental pollution, resource depletion, environmental disaster, and other problems. The contradiction between the environment and development, and the management of the ecological environment in mining areas are urgent p-problems to be solved. An ecological environment assessment is an important part of the ecological environment in a mining area. The accurate evaluation of the ecological environment is the premise behind environmental governance in a mining area. However, current ecological assessment indicators were not developed specifically for mine environment monitoring and, thus, cannot provide an effective and comprehensive assessment of the mineral environment. To this end, in order to improve the environmental monitoring performance in mining areas, a novel Mine-Specific Eco-Environment Index (MSEEI) was proposed, integrating factors from five main aspects associated with minerals, including temperature, vegetation, soil moisture, atmospheric environment, and mining scale. Meanwhile, a widely concerned mine—Luanchuan mine—was used as the case area to test the performance of our MSEEI. The results showed a significant correlation between RSEI and MSEEI (p < 0.01). The mean correlation achieved between RSEI and MSEEI was 0.91, which was much higher than the correlations between RSEI and enhanced vegetation index (EVI), soil moisture monitoring index (SMMI), normalized difference built-up and soil index (NDBSI), PM2.5 concentration (DI), and heat (LST). In addition, based on our long-term MSEEI results of Luanchuan mine from 1997 to 2021, the ecological status of Luanchuan mine showed a trend of first declining and then rising. Specifically, the MSEEI first declined from 0.85 to 0.77 between 1997 and 2012, and then rebounded to about 0.8 in recent years. The MSEEI exhibited a good applicability in the ecological assessment of mining areas. Our MSEEI can provide useful guidance for mine environment monitoring. MSEEI can directly reflect the ecological damage after mining, provide scientific guidance for the exploitation and utilization of mineral resources, and promote the protection and sustainable development of Earth’s resources and mine ecological environments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3