Combination of Continuous Wavelet Transform and Successive Projection Algorithm for the Estimation of Winter Wheat Plant Nitrogen Concentration

Author:

Chen Xiaokai1,Li Fenling1,Chang Qingrui1

Affiliation:

1. College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China

Abstract

Plant nitrogen concentration (PNC) is a traditional standard index to measure the nitrogen nutritional status of winter wheat. Rapid and accurate diagnosis of PNC performs an important role in mastering the growth status of winter wheat and guiding field precision fertilization. In this study, the in situ hyperspectral reflectance data were measured by handheld SVC HR−1024I (SVC) passive field spectroradiometer and PNC were determined by the modified Kjeldahl digestion method. Continuous wavelet transform (CWT), successive projection algorithm (SPA) and partial least square (PLS) regression were combined to construct an efficient method for estimating winter wheat PNC. The main objectives of this study were to (1) use CWT to extract various wavelet coefficients under different decomposition scales, (2) use SPA to screen sensitive wavelet coefficients as independent variables and combine with PLS regression to establish winter wheat PNC estimation models, respectively, and (3) compare the precision of PLS regression models to find a reliable model for estimating winter wheat PNC during the growing season. The results of this paper showed that properly increasing the decomposition scale of CWT could weaken the impact of high-frequency noise on the prediction model. The number of wavelet coefficients has been significantly reduced after screened by SPA. The PNC estimation model (CWT–Scale6–SPA–PLS) based on the wavelet coefficients of the sixth decomposition scale most accurately predicted the PNC (the determination coefficient of the calibration set (Rc2) was 0.85. Root mean square error of the calibration set (RMSEc) was 0.27. The determination coefficient of the validation set (Rv2) was 0.84. Root mean square error of the validation set (RMSEv) was 0.28 and relative prediction deviation (RPD) was 2.47). CWT-Scale6-SPA-PLS can be used to predict PNC. The optimal winter wheat PNC prediction model based on CWT proposed in this study is a reliable method for rapid and nondestructive monitoring of PNC and provides a new technical method for precision nitrogen management.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3