Learning Domain-Adaptive Landmark Detection-Based Self-Supervised Video Synchronization for Remote Sensing Panorama

Author:

Mei Ling1ORCID,He Yizhuo2ORCID,Fishani Farnoosh Javadi3,Yu Yaowen4ORCID,Zhang Lijun4,Rhodin Helge3

Affiliation:

1. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2. School of Computer Science, Carnegie Mellon University (CMU), Pittsburgh, PA 15213, USA

3. Department of Computer Science, University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada

4. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The synchronization of videos is an essential pre-processing step for multi-view reconstruction such as the image mosaic by UAV remote sensing; it is often solved with hardware solutions in motion capture studios. However, traditional synchronization setups rely on manual interventions or software solutions and only fit for a particular domain of motions. In this paper, we propose a self-supervised video synchronization algorithm that attains high accuracy in diverse scenarios without cumbersome manual intervention. At the core is a motion-based video synchronization algorithm that infers temporal offsets from the trajectories of moving objects in the videos. It is complemented by a self-supervised scene decomposition algorithm that detects common parts and their motion tracks in two or more videos, without requiring any manual positional supervision. We evaluate our approach on three different datasets, including the motion of humans, animals, and simulated objects, and use it to build the view panorama of the remote sensing field. All experiments demonstrate that the proposed location-based synchronization is more effective compared to the state-of-the-art methods, and our self-supervised inference approaches the accuracy of supervised solutions, while being much easier to adapt to a new target domain.

Funder

Fundamental Research Funds for the Central Universities, HUST

International Program Award for Young Talent Scientific Research People of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3