A Hybrid Approach to Improve the Video Anomaly Detection Performance of Pixel- and Frame-Based Techniques Using Machine Learning Algorithms

Author:

Tutar Hayati1ORCID,Güneş Ali1ORCID,Zontul Metin2ORCID,Aslan Zafer1

Affiliation:

1. Department of Computer Engineering, Istanbul Aydin University, Istanbul 34295, Turkey

2. Department of Computer Engineering, Sivas University of Science and Technology, Sivas 58000, Turkey

Abstract

With the rapid development in technology in recent years, the use of cameras and the production of video and image data have similarly increased. Therefore, there is a great need to develop and improve video surveillance techniques to their maximum extent, particularly in terms of their speed, performance, and resource utilization. It is challenging to accurately detect anomalies and increase the performance by minimizing false positives, especially in crowded and dynamic areas. Therefore, this study proposes a hybrid video anomaly detection model combining multiple machine learning algorithms with pixel-based video anomaly detection (PBVAD) and frame-based video anomaly detection (FBVAD) models. In the PBVAD model, the motion influence map (MIM) algorithm based on spatio–temporal (ST) factors is used, while in the FBVAD model, the k-nearest neighbors (kNN) and support vector machine (SVM) machine learning algorithms are used in a hybrid manner. An important result of our study is the high-performance anomaly detection achieved using the proposed hybrid algorithms on the UCF-Crime data set, which contains 128 h of original real-world video data and has not been extensively studied before. The AUC performance metrics obtained using our FBVAD-kNN algorithm in experiments were averaged to 98.0%. Meanwhile, the success rates obtained using our PBVAD-MIM algorithm in the experiments were averaged to 80.7%. Our study contributes significantly to the prevention of possible harm by detecting anomalies in video data in a near real-time manner.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3