On the Conic Convex Approximation to Locate and Size Fixed-Step Capacitor Banks in Distribution Networks

Author:

Montoya Oscar DaniloORCID,Gil-González WalterORCID,Garcés AlejandroORCID

Abstract

The problem of the optimal siting and sizing of fixed-step capacitor banks is studied in this research from the standpoint of convex optimization. This problem is formulated through a mixed-integer nonlinear programming (MINLP) model, in which its binary/integer variables are related to the nodes where the capacitors will be installed. Simultaneously, the continuous variables are mainly associated with the power flow solution. The main contribution of this research is the reformulation of the exact MINLP model through a mixed-integer second-order cone programming model (MI-SOCP). This mixed-integer conic model maintains the nonlinearities of the original MINLP model; however, it can be solved efficiently with the branch & bound method combined with the interior point method adapted for conic programming models. The main advantage of the proposed MI-SOCP model is the possibility of finding the global optimum based on the convex nature of the power flow problem for each binary/integer variable combination in the branch & bound search tree. The numerical results in the IEEE 33- and IEEE 69-bus systems demonstrate the effectiveness and robustness of the proposed MI-SOCP model compared to different metaheuristic approaches. The MI-SOCP model finds the final power losses of the IEEE 33- and IEEE 69-bus systems of 138.416kW and 145.397kW, which improves the best literature results reached with the flower pollination algorithm, i.e., 139.075 kW, and 145.860kW, respectively. The simulations are carried out in MATLAB software using its convex optimizer tool known as CVX with the Gurobi solver.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3