On the Solution of Equations by Extended Discretization

Author:

Argyros Gus I.,Argyros Michael I.,Regmi SamundraORCID,Argyros Ioannis K.ORCID,George SanthoshORCID

Abstract

The method of discretization is used to solve nonlinear equations involving Banach space valued operators using Lipschitz or Hölder constants. But these constants cannot always be found. That is why we present results using ω− continuity conditions on the Fréchet derivative of the operator involved. This way, we extend the applicability of the discretization technique. It turns out that if we specialize ω− continuity our new results improve those in the literature too in the case of Lipschitz or Hölder continuity. Our analysis includes tighter upper error bounds on the distances involved.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference29 articles.

1. Extending the Applicability of Stirling’s Method

2. On the local convergence of secant-type methods

3. An extension of the mesh independence principle for operator equations in Banach space

4. Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, 15;Argyros,2007

5. Convergence and Application of Newton-type Iterations, Convergence and Application of Newton-type Iterations;Argyros,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3