Is a COVID-19 Second Wave Possible in Emilia-Romagna (Italy)? Forecasting a Future Outbreak with Particulate Pollution and Machine Learning

Author:

Mirri SilviaORCID,Delnevo GiovanniORCID,Roccetti MarcoORCID

Abstract

The Nobel laureate Niels Bohr once said that: “Predictions are very difficult, especially if they are about the future”. Nonetheless, models that can forecast future COVID-19 outbreaks are receiving special attention by policymakers and health authorities, with the aim of putting in place control measures before the infections begin to increase. Nonetheless, two main problems emerge. First, there is no a general agreement on which kind of data should be registered for judging on the resurgence of the virus (e.g., infections, deaths, percentage of hospitalizations, reports from clinicians, signals from social media). Not only this, but all these data also suffer from common defects, linked to their reporting delays and to the uncertainties in the collection process. Second, the complex nature of COVID-19 outbreaks makes it difficult to understand if traditional epidemiological models, such as susceptible, infectious, or recovered (SIR), are more effective for a timely prediction of an outbreak than alternative computational models. Well aware of the complexity of this forecasting problem, we propose here an innovative metric for predicting COVID-19 diffusion based on the hypothesis that a relation exists between the spread of the virus and the presence in the air of particulate pollutants, such as PM2.5, PM10, and NO2. Drawing on the recent assumption of 239 experts who claimed that this virus can be airborne, and further considering that particulate matter may favor this airborne route, we developed a machine learning (ML) model that has been instructed with: (i) all the COVID-19 infections that occurred in the Italian region of Emilia-Romagna, one of the most polluted areas in Europe, in the period of February–July 2020, (ii) the daily values of all the particulates taken in the same period and in the same region, and finally (iii) the chronology according to which restrictions were imposed by the Italian Government to human activities. Our ML model was then subjected to a classic ten-fold cross-validation procedure that returned a promising 90% accuracy value. Finally, the model was used to predict a possible resurgence of the virus in all the nine provinces of Emilia-Romagna, in the period of September–December 2020. To make those predictions, input to our ML model were the daily measurements of the aforementioned pollutants registered in the periods of September–December 2017/2018/2019, along with the hypothesis that the mild containment measures taken in Italy in the so-called Phase 3 are obeyed. At the time we write this article, we cannot have a confirmation of the precision of our predictions. Nevertheless, we are projecting a scenario based on an original hypothesis that makes our COVID-19 prediction model unique in the world. Its accuracy will be soon judged by history—and this, too, is science at the service of society.

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Reference48 articles.

1. Coronavirus Crisis May Get Worse and Worse and Worse, Warns WHOhttps://www.independent.co.uk/news/uk/home-news/coronavirus-cases-deaths-who-infection-rate-global-latest-a9616366.html?fbclid=IwAR1rTs52bD1jZBjNEYNt63OuN_DweUkCHlB5oQAAExD2JAR-TXpc5pL2-QA

2. Coronavirus Disease (COVID-2019) Situation Reportshttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

3. Aggiornamento Casi COVID-19http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1

4. Moody’s: Italy’s GDP to Contract 9.3% in 2020https://www.fxstreet.com/news/moodys-italys-gdp-to-contract-93-in-2020-202004300541

5. Can an Algorithm Predict the Pandemic’s Next Moves? The New York Timeshttps://www.nytimes.com/2020/07/02/health/santillana-coronavirus-model-forecast.html?smid=fb-share&fbclid=IwAR15B7tGHRL8oyL1NHgjXyGojTSYbHpoO0ww8hG85B2bN7NVMxJVK2da5wU

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3