Abstract
When an indoor disaster occurs, the disaster site can become very difficult to escape from due to the scenario or building. Most people evacuate when a disaster situation occurs, but there are also disaster victims who cannot evacuate and are isolated. Isolated disaster victims often cannot move quickly because they do not have all the necessary information about the disaster, and secondary damage can occur. Rescue workers must rescue disaster victims quickly, before secondary damage occurs, but it is not always easy to locate isolated victims within a disaster site. In addition, rescue operators can also suffer from secondary damage because they are exposed to disaster situations. We present a HHD technique that can detect isolated victims in indoor disasters relatively quickly, especially when covered by fire smoke, by merging one-stage detectors YOLO and RetinaNet. HHD is a technique with a high human detection rate compared to other techniques while using a 1-stage detector method that combines YOLO and RetinaNet. Therefore, the HHD of this paper can be beneficial in future indoor disaster situations.
Funder
National Research Foundation of Korea
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献