Using Hybrid Algorithms of Human Detection Technique for Detecting Indoor Disaster Victims

Author:

Lee Ho-WonORCID,Lee Kyong-Oh,Bae Ji-HyeORCID,Kim Se-Yeob,Park Yoon-Young

Abstract

When an indoor disaster occurs, the disaster site can become very difficult to escape from due to the scenario or building. Most people evacuate when a disaster situation occurs, but there are also disaster victims who cannot evacuate and are isolated. Isolated disaster victims often cannot move quickly because they do not have all the necessary information about the disaster, and secondary damage can occur. Rescue workers must rescue disaster victims quickly, before secondary damage occurs, but it is not always easy to locate isolated victims within a disaster site. In addition, rescue operators can also suffer from secondary damage because they are exposed to disaster situations. We present a HHD technique that can detect isolated victims in indoor disasters relatively quickly, especially when covered by fire smoke, by merging one-stage detectors YOLO and RetinaNet. HHD is a technique with a high human detection rate compared to other techniques while using a 1-stage detector method that combines YOLO and RetinaNet. Therefore, the HHD of this paper can be beneficial in future indoor disaster situations.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3