Efficient Algebraic Method for Testing the Invertibility of Finite State Machines

Author:

Lotfi Zineb1,Khalifi Hamid1,Ouardi Faissal1

Affiliation:

1. ANISSE Research Team, Department of Computer Science, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco

Abstract

The emergence of new embedded system technologies, such as IoT, requires the design of new lightweight cryptosystems to meet different hardware restrictions. In this context, the concept of Finite State Machines (FSMs) can offer a robust solution when using cryptosystems based on finite automata, known as FAPKC (Finite Automaton Public Key Cryptosystems), introduced by Renji Tao. These cryptosystems have been proposed as alternatives to traditional public key cryptosystems, such as RSA. They are based on composing two private keys, which are two FSMs M1 and M2 with the property of invertibility with finite delay to obtain the composed FSM M=M1oM2, which is the public key. The invert process (factorizing) is hard to compute. Unfortunately, these cryptosystems have not really been adopted in real-world applications, and this is mainly due to the lack of profound studies on the FAPKC key space and a random generator program. In this paper, we first introduce an efficient algebraic method based on the notion of a testing table to compute the delay of invertibility of an FSM. Then, we carry out a statistical study on the number of invertible FSMs with finite delay by varying the number of states as well as the number of output symbols. This allows us to estimate the landscape of the space of invertible FSMs, which is considered a first step toward the design of a random generator.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference20 articles.

1. Fapkc3: A new finite automaton public key cryptosystem;Tao;J. Comput. Sci. Technol.,1997

2. A variant of the public key cryptosystem fapkc3;Tao;J. Netw. Comput. Appl.,1997

3. The generalization of public key cryptosystem fapkc4;Tao;Chin. Sci. Bull.,1999

4. Amorim, I. (2016). Linear Finite Transducers towards a Public Key Cryptographic System. [Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto].

5. Renji, T. (2008). Finite Automata and Application to Cryptography, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3